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THE NULL-CONE AND COHOMOLOGY OF VECTOR BUNDLES

ON FLAG VARIETIES

KARI VILONEN AND TING XUE

Abstract. We study the null-cone of a semi-simple algebraic group acting on
a number of copies of its Lie algebra via the diagonal adjoint action. We show
that the null-cone has rational singularities in the case of SL3. We observe by
example that the null-cone is not normal in general and that the normalization
of the null-cone does not have rational singularities in general. This is achieved
by computing cohomology of certain vector bundles on flag varieties.

1. Introduction

In this paper we study the null-cone of a semi-simple algebraic group acting on
a number of copies of its Lie algebra via the diagonal adjoint action. Such actions
and their generalizations have been considered by various authors; see, for example,
[CM,KW1,KW2,LMP]. Our interest in the question was motivated by applications
in the study of ordinary deformations of Galois representations. This point of view
is due to Snowden who studied the case g = sl2 in [S]. In the case of g = sl2 he shows
that the null-cones (and other related spaces that come up in ordinary deformations
of Galois representations) are Cohen-Macaulay but not Gorenstein. In the case of
characteristic zero the method of Snowden amounts to proving that the null-cone
has rational singularities. In this paper we show that for g = sl3 the null-cones
do still have rational singularities, and hence are Cohen-Macaulay. However, we
also show that this fails in general. For example, it is not difficult to see that the
null-cone is not normal when the group is of type B2. In type A5 we further show
that the normalization of the null-cone does not have rational singularities. We do
this by giving estimates on cohomology groups of equvariant vector bundles on flag
varieties.

In [H] Hesselink shows that the nilpotent cone of a semi-simple Lie algebra has
rational singularities. As the cotangent bundle of the flag variety is a resolution of
singularities of the nilpotent cone, one is reduced to proving cohomology vanishing
of the symmetric algebra of the tangent bundle of the flag variety. By utilizing
the Koszul complex this is reduced to the Borel-Weil-Bott theorem. In our case
of multiple copies of the Lie algebra the situation is more complicated as one is
reduced to analyzing the cohomology of symmetric powers of direct sums of copies
of the tangent bundle of a flag variety. This, in turn, is reduced to analyzing
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cohomology groups of the whole tensor algebra of the tangent bundle. We carry
out this analysis just far enough to produce the counterexamples. The calculation
of the cohomology groups of the tensor algebra of the tangent bundle appears to
be a difficult problem.

The paper is organized as follows. In section 2 we introduce the null-cone and
in section 3 we make some general remarks on cohomology of equivariant vector
bundles on flag varieties. In section 4 we reduce the question of rational singularities
to a question of cohomology of equivariant vector bundles on flag varieties. In
section 5 we compute a large enough piece of the cohomology of certain equivariant
vector bundles and in section 6 we state and prove our main results. We manage to
perform this computation sufficiently far enough to produce the counterexamples.

As our results in this paper are mostly counterexamples we will just work in
characteristic zero and will only comment on the finite characteristic case.

2. The null-cone

We work over a field of characteristic zero which we can and will, for simplicity,
take to be C. Let g be a semi-simple Lie algebra, and let us write G for the
corresponding adjoint group Aut(g)0.

We write b for Borel subalgebras of g and n = [b, b] for their nil-radicals. Simi-
larly, we write B for Borel subgroups of G.

The group G acts diagonally on g⊕r via the adjoint action. We write

Ar = {(x1, . . . , xr) ∈ g
⊕r | f(x1, . . . , xr) = 0 ∀ f ∈ C[g⊕r]G+}

for the (reduced) invariant theory null-cone associated to this action. The null-cone
itself is, in general, a non-reduced scheme, but in what follows we will work with
its underlying reduced scheme structure. It is not difficult to see that this variety
can also be described in the following manner (see [KW2]):

Ar = {(x1, . . . , xr) ∈ g
⊕r | ∃ Borel subalgebra b such that xi ∈ n for all i}.

Furthermore, in the case g = sln, we can view Ar as

Ar = {(x1, . . . , xr) ∈ g
⊕r |xi1 · · ·xin = 0 for all choices of i1, . . . , in} .

The variety Ar has a natural G-equivariant resolution of singularities which can
be described as follows. Let X denote the flag variety of G, then the resolution is
given by

Ãr := G×B n⊕r ∼= (T ∗X)⊕r ϕr �� Ar ,

where the map ϕr is given by ϕr(g, x1, . . . , xr) = (g x1, . . . , g xr). We write

π : Ãr
∼= (T ∗X)⊕r → X

for the projection.
In the case of r = 1 the null-cone A1 = N is the usual nilpotent cone and the

resolution ϕ1 : T ∗X → N is often referred to as the Springer resolution. In this
case the null-cone is reduced and the ring of invariants exhibits it as a complete
intersection. In the case of r = 2 Charbonnel and Moreau [CM] defined a nilpotent
bicone and they show that it is a complete intersection and is in general not reduced.
The variety A2 is an irreducible component of the bicone.

The case of g = sl2 was studied by Snowden [S] where he proves that in this case
Ar has rational singularities and so is, in particular, Cohen-Macaulay.
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As ϕr : Ãr → Ar is a resolution of singularities of an affine variety we conclude
that

Γ(Ãr,O ˜Ar
) is the normalization of C[Ar] .

It is easy to see that Ar has rational singularities, i.e., that Rϕr∗O ˜Ar

∼= OAr
if and

only if

Hi(Ãr,O ˜Ar
) = 0 for i > 0 and Γ(Ãr,O ˜Ar

) = C[Ar] .

3. Cohomology of equivariant vector bundles

Let us consider the flag variety X = G/B, where we think of having chosen
a particular Borel subgroup B as a base point. Then we have an equivalence of
categories:

{G-equivariant vector bundles on X} ←→ {B-representations} .
Given a B-representation E we will use the same symbol E to denote the corre-
sponding vector bundle. Thus, Hk(X,E) stands for the cohomology groups of the

G-equivariant vector bundle associated to E. The cohomology groups Hk(X,E)
are G-representations, of course.

Let us write T ⊂ B for a maximal torus and X∗(T ) for the group of characters
λ : T → Gm. We also write Φ ⊂ X∗(T ) for the set of roots and we choose a positive
root system Φ+ such that the roots in B are negative. We also write

X+(T ) = {λ ∈ X∗(T ) | 〈λ, α̌〉 ≥ 0 for α ∈ Φ+}
for the dominant weights; here α̌ stands for the coroot associated to α. We write
L(λ) for the irreducible representation of G associated to the highest weight λ ∈
X+(T ). Given a representation V of G we write

Supp(V ) = {λ ∈ X+(T ) | L(λ) occurs as a direct summand in V }
for the support of V ; it is, of course, a subset of the dominant weights X+(T ).

We can view each λ ∈ X∗(T ) also as a character of B and in this manner λ gives
rise to a G-equivariant line bundle Lλ. If λ is dominant, then L(λ) = H0(X,Lλ).
The “dot” action of the Weyl group W on X∗(T ) is given by w · λ = w(λ+ ρ)− ρ;
here ρ, as usual, is half the sum of positive roots. We recall the statement of the
Borel-Weil-Bott theorem:

(3.1)

If there exists a w ∈ W such that w · λ ∈ X+(T ), then

Hk(X,Lλ) �
{

H0(X,Lw·λ) if k = l(w),
0 otherwise .

This statement says, in particular, that if there is no w ∈ W such that w · λ is
dominant, then the cohomology of Lλ vanishes in all degrees.

Consider a B-representation E and the cohomology groups Hk(X,E) of the
corresponding G-equivariant vector bundle. We will give a simple upper bound for
Supp(Hk(X,E)). Let us choose a filtration of the B-representation E such that the
associated graded grE is a direct sum of one-dimensional representations, i.e., of
characters of T . Let us write χ(E) for the set of characters appearing in this direct
sum decomposition:

grE ∼=
⊕

λi∈χ(E)

λ⊕ni
i .
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Thus, we obtain a filtration of the G-bundle E such that the associated graded is
a direct sum of G-equivariant line bundles. From this it is easy to conclude:

Supp(Hk(X,E)) ⊂ {λ ∈ X+(T ) | w · λ ∈ χ(E) for a w ∈ W with �(w) = k} .

Let us call the right-hand side of this equality the potential support of Hk(X,E),

and we write PSupp(Hk(X,E)) for it.
Let us recall that either by a direct calculation or using the Hodge decomposition

for the flag variety and, identifying n and (g/b)∗ via the Killing form, we conclude:
(3.2)

Hi(X,∧kn) =

{
0 if i �= k,
trivial G-module of dimension |{w ∈ W | l(w) = k}| if i = k.

Finally, as part of the direct calculation one makes use of the following:

Lemma 3.1. If χ is a sum of distinct negative roots and w · χ is dominant, then
w · χ = 0.

For a proof of this lemma see, for example, [J, 6.18 Proposition].

4. Some reductions

Recall that we have reduced the question of normality and rational singularities
to the study of

Hi(Ãr,O ˜Ar
) = Hi((T ∗X)⊕r,O(T∗X)⊕r) .

We have

Hi(Ãr,O ˜Ar
) = Hi((T ∗X)⊕r,O(T∗X)⊕r) = Hi(X, Sym((g/b)⊕r)) .

In the latter equality we use the fact that the tangent bundle of X is TX =
g/b as G-equivariant vector bundles; recall our notational convention that the B-
representation g/b also stands for the corresponding G-equivariant bundle. Thus,
we are reduced to analyzing the cohomology groups Hi(X, Sym((g/b)⊕r)). In par-
ticular, Ar is normal if and only if

C[Ar] = H0(X, Sym((g/b)⊕r)) .

We then conclude that

Ar is normal if and only if the map Sym(g⊕r) → H0(X, Sym((g/b)⊕r)) is onto

and

(4.1)
Ar has rational singularities if and only if it is

normal and Hi(X, Sym((g/b)⊕r)) = 0 for i > 0 .

Next, we will make some very general reductions for the vanishing of the higher
cohomology in (4.1). As we will show later, the higher cohomology does not vanish
in general and hence the general reductions are not so useful. We will be able
to obtain more precise statements later. However, the general remarks below are
perhaps helpful as a general guide.

We begin with some simple lemmas:

Lemma 4.1. Suppose that E is a B-module. Then for all i ≥ 1,

Hi(X, Sym(E⊕r)) = 0 for all r ≥ 1 ⇐⇒ Hi(X,E⊗r) = 0 for all r ≥ 1.
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Proof. We have Sym(E⊕r) = (Sym(E))⊗r =
⊕

(Si1E ⊗ · · · ⊗ SirE). So E⊗r is
a direct summand of Sym(E⊕r) and thus “⇒” follows. In the other direction,

assume that Hi(X,E⊗r) = 0 for all r ≥ 1. Then we have Hi(X, (E⊕r)⊗k) = 0 for

all r, k ≥ 1. Now Symk(E⊕r) is a direct summand of (E⊕r)⊗k. It follows that

Hi(X, Symk(E⊕r)) = 0 for all r, k ≥ 1 and thus Hi(X, Sym(E⊕r)) = 0 for all
r ≥ 1. �

In the same way we obtain

Lemma 4.2. Suppose that E is a B-module. Then

Hi(X,∧r(E⊕k)) = 0 for all r, k ≥ 1, i ≥ r + 1 ⇐⇒ Hi(X,E⊗r) = 0

for all r ≥ 1, i ≥ r + 1.

Let us now consider the vanishing statement:

(4.2) Hi(X, Sym((g/b)⊕r)) = 0 for i ≥ 1 .

Consider the short exact sequence

0 → b⊕r → g⊕r → (g/b)⊕r → 0.

Its associated Koszul complex provides a resolution of the Symm(g⊕r)-module
Symm((g/b)⊕r) as follows:

(4.3) · · · ∧i (b⊕r)⊗ Symm−i(g⊕r) → · · · → Symm(g⊕r) → Symm((g/b)⊕r) → 0.

As the Symm−i(g⊕r) are G-representations, the corresponding G-equivariant
vector bundles are trivial. We conclude that the vanishing statement (4.2) is equiv-
alent to

(4.4) Hi+j(X,∧j(b⊕r)) = 0 for all i ≥ 1 .

This statement holds for any particular r.
On the other hand, using Lemma 4.1, we see that the vanishing statement (4.2)

for all r is equivalent to

Hi(X, (g/b)⊗r) = 0 for all i, r ≥ 1.

Similarly, using Lemma 4.2 we see that the vanishing statement (4.4) for all r is
equivalent to

Hi(X, b⊗r) = 0 for all r ≥ 1, i ≥ r + 1.

The short exact sequence

0 → b → g → g/b → 0

will give us further information. If we consider it as a two-step complex b → g with
cohomology g/b and pass to the associated tensor complexes, we obtain

. . . (g⊗r−q ⊗ b
⊗q)⊕(

r
q) → · · · → g

⊗r → (g/b)⊗r → 0.

Passing to the associated spectral sequence we obtain

(4.5) Ep,−q
1 = (g⊗r−q)⊕(

r
q) ⊗Hp(X, b⊗q) =⇒ Hp−q(X, (g/b)⊗r) .

From this spectral sequence we conclude that the condition

(4.6) Hi(X, b⊗r) = 0 for all i ≥ r

implies
g⊗r → H0(X, (g/b)⊗r) is a surjection .
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Arguing as in Lemma 4.1 by decomposing tensors we conclude that if condition (4.6)
holds for all r, then Sym(g⊕r) → H0(X, Sym((g/b)⊕r)) is onto for all r. Combining
this with the previous discussion we obtain

Theorem 4.3. If condition (4.6) is satisfied for all r, then Ar has rational singu-
larities for all values r.

5. Cohomology of the vector bundles b⊗r
for type An

In the previous section we reduced the question of normality and the question
of rational singularities of Ar to the study of the cohomology of b⊗r. We will now
calculate the cohomology of these vector bundles for small r in type An−1, i.e., for
g = sln. We will go sufficiently far to obtain our counterexamples, but will not
make an attempt for a complete general answer.

5.1. The case r = 1 and g of any type. This case is, of course, well known, easy
and applies to any g, but we include the details in any case.

We will show that:

(5.1) Hk(X, b) = 0 for all k.

Consider the short exact sequence

0 → n → b → b/n → 0.

Since b/n is a trivial vector bundle, Hk(X, b/n) = 0 for all k ≥ 1. As by (3.2) we

have Hk(X, n) = 0 for k �= 1, it follows that

Hk(X, b) = 0 for k ≥ 2.

From the short exact sequence

0 → b → g → g/b → 0

we obtain the exact sequence

0 → H0(X, b) → H0(X, g) → H0(X, g/b) → H1(X, b) → 0.

Moreover, H0(X, g) ∼= g and the map g → H0(X, g/b) is an isomorphism, as can be
seen by a direct verification, for example. Thus, we obtain (5.1).

5.2. The case r = 2 and g of type An−1. Let g = sln, n ≥ 3. We will show that

(5.2) Hk(X, b⊗ b) =

{
0 if k �= 1,
C if k = 1

and

(5.3) Hk(X, (g/b)⊗2) ∼=
{

(g⊗ g)/C if k = 0,
0 if k ≥ 1.

First, we claim that

(5.4) the potential support of Hk(X, b⊗ b) is {0} for all k ≥ 0.

Let χ ∈ χ(b⊗ b). We will show that

either Hk(X,Lχ) = 0 for all k ≥ 0 or χ = w · 0 for some w ∈ W.

Recall that the bundle associated to h = b/n is trivial and thus, by making use of
Lemma 3.1, it suffices to prove the result for χ ∈ χ(n ⊗ n). The case when χ is a
sum of distinct negative roots follows from (3.1) and Lemma 3.1. So it remains to
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consider the case when χ ∈ χ(n⊗ n) and χ is not a sum of distinct negative roots.
In that case χ = −2α for a positive root α ∈ Φ+ and ht(α) = 1 (if ht(α) > 1, then
χ is a sum of distinct negative roots). Let us denote the set of simple roots with
respect to Φ+ by Δ := {αi, i = 1, . . . , n−1}. Let α = αi, 1 ≤ i ≤ n−1. If i ≤ n−2,
then 〈−2αi+ρ, (αi+αi+1)

∨〉 = 0; if i ≥ 2, then 〈−2αi+ρ, (αi−1+αi)
∨〉 = 0; thus,

Hk(X,Lχ) = 0 for all k. This finishes the proof of (5.4).
Using the short exact sequence

0 → b⊗ b → g⊗ b → g/b⊗ b → 0

and Hk(X, g⊗ b) ∼= g⊗Hk(X, b) = 0 for all k (we make use of (5.1)), we see that

H0(X, b⊗ b) = 0 and Hk(X, b⊗ b) ∼= Hk−1(X, b⊗ g/b) as G-modules for k ≥ 1.

Using the short exact sequence

0 → b⊗ g/b → g⊗ g/b → (g/b)⊗2 → 0

and Hk(X, g⊗ g/b) ∼= g⊗Hk(X, g/b) = 0 for k ≥ 1, we see that

Hk(X, b⊗ g/b) ∼= Hk−1(X, (g/b)⊗2) as G-modules for k ≥ 2

and that we have an exact sequence of G-modules

0 → H0(X, b⊗ g/b) → g⊗ g → H0(X, (g/b)⊗2) → H1(X, b⊗ g/b) → 0.

It follows that we have an isomorphism of G-modules

(5.5) Hk(X, b⊗ b) ∼= Hk−2(X, (g/b)⊗2) for k ≥ 3

and an exact sequence of G-modules

(5.6) 0 → H1(X, b⊗ b) → g⊗ g → H0(X, (g/b)⊗2) → H2(X, b⊗ b) → 0.

As 0 is clearly not in the potential support of Hk(X, (g/b)⊗2), it follows from

(5.4), (5.5) and (5.6) that Hk(X, b⊗ b) = 0 for k ≥ 2, and

H1(X, b⊗ b) ∼= HomG(C, g⊗ g) ∼= HomG(g, g) ∼= C.

This completes the proof of (5.2). It also follows that

(5.7) Hk(X, b⊗ g/b) ∼=
{

C if k = 0,
0 if k ≥ 1.

Finally, we conclude (5.3) from (5.2), (5.5), and (5.6).

5.3. The case r = 3 and g of type An−1. Let g = sln, n ≥ 3. We will show that

Hk(X, b⊗3) = 0, k ≤ 1 or k ≥ 4,

H2(X, b⊗3) =

⎧⎨⎩
C⊕2 ⊕ L(α1 + α2)

⊕5 ⊕ L(2α1 + α2)
⊕L(α1 + 2α2) if n = 3,

C⊕2 if n ≥ 4,
(5.8)

H3(X, b⊗3) =

{
L(α1 + 2α2 + α3) if n = 4,
0 if n �= 4.
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We first show that

(5.9)

if n ≥ 5 PSupp(Hk(X, b⊗3)) = {0} for all k,

if n = 4 PSupp(Hk(X, b⊗3)) =

{
{0, α1 + 2α2 + α3} if k = 3,
{0} if k �= 3,

if n = 3 PSupp(Hk(X, b⊗3))

=

⎧⎨⎩
{0, α1 + α2, 2α1 + α2, α1 + 2α2} if k = 2,
{0, α1 + α2} if k = 3,
{0} if k �= 2, 3.

Let χ ∈ χ(b⊗3). Recall that the bundle associated to h = b/n is trivial and thus,
by making use of (5.4), it suffices to prove the result for χ ∈ χ(n⊗3). If χ ∈ χ(∧3n),
we see by (3.1) and Lemma 3.1 that either Hk(X,Lχ) = 0 for all k or χ = w · 0 for
some w ∈ W . It remains to consider χ of the form −2α− β, α, β ∈ Φ+.

Let us introduce some notation. For w ∈ W , denote

Φw := {γ ∈ Φ+ |w−1γ ∈ Φ−}.

Suppose that w = si1si2 · · · sil , where si = sαi
, is a reduced expression. Recall that

we have

Φw = {αi1 , si1(αi2), si1si2(αi3), · · · , si1 · · · sil−1
(αil)}.

In particular, the cardinality of Φw is the length �(w).
For λ ∈ X(T ), we have

(5.10) w · λ = w(λ)−
∑
γ∈Φw

γ.

Suppose first that α �= β. We show that if there exists w ∈ W such that
w · (−2α − β) ∈ X+(T ), then w · (−2α − β) = 0 unless n = 3 and χ = −3α1 − α2

or −α1 − 3α2.
As the dominant Weyl chamber is contained in the positive root cone, i.e., the

inverse of the Cartan matrix has positive entries, we have:

(5.11)
Let λ ∈ ZΦ be an element in the root lattice which is

dominant and not zero, then λ ∈ Z>0α1 + · · ·+ Z>0αn−1 .

Assume that w · (−2α − β) is dominant and not equal to zero. Making use
of (5.10) and (5.11) we see that

w · (−2α− β) = −2wα− wβ −
∑
γ∈Φw

γ ∈ Z>0α1 + · · ·+ Z>0αn−1 .

Let us write α0 = α1 + · · · + αn−1 for the highest root and then we can rephrase
the above equality as

−2wα− wβ −
∑
γ∈Φw

γ ≥ α0 .

Clearly, at least one of wα or wβ has to be negative. Note that if wβ is negative,
then −wβ ∈ Φw and similarly for wα. Thus, if wα is negative and wβ is not, we
get

−wα− wβ −
∑

γ∈Φw−{−wα}
γ ≥ α0 .
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But this is impossible as −wα ≤ α0. Similarly, we see that it is impossible for
wα to be positive and for wβ to be negative. Hence, both wα and wβ have to be
negative. In this case we see that

−wα−
∑

γ∈Φw−{−wα,−wβ}
γ ≥ α0 .

This is only possble if wα = −α0, Φw = {α0,−wβ}, and then also �(w) = 2. One
sees directly that wα0 can be negative for �(w) = 2 only when n = 3. In that case
the only possibilities are:

−2α1 − (α1 + α2) = (s1s2) · (α1 + α2), −2α2 − (α1 + α2) = (s2s1) · (α1 + α2) .

Thus, we conclude that in this case the only possibility for potential support, in
addition to 0, is α1 + α2 ∈ PSuppH2(X, b⊗3) when n = 3.

Suppose now that α = β and thus χ = −3α. If htα ≥ 3, then χ is a sum of
distinct negative roots and we see by (3.1) and Lemma 3.1 that either Hk(X,Lχ) =
0 for all k or χ = w · 0 for some w ∈ W . Let us assume next that htα = 2 and we
write α = αi+αi+1, 1 ≤ i ≤ n−2. If i ≤ n−3, then 〈−3α+ρ, (αi+αi+1+αi+2)

∨〉 =
0 and if i ≥ 2, then 〈−3α + ρ, (αi−1 + αi + αi+1)

∨〉 = 0. Thus, in these cases

Hk(X,Lχ) = 0 for all k and they do not contribute to the potential support.
Therefore, we are left to consider the case when n = 3 and i = 1. Then

−3(α1 + α2) = (s1s2s1) · (α1 + α2).

Hence, α1 + α2 ∈ PSuppH3(X, b⊗3) when n = 3.
Finally, let us assume that htα = 1 and so α = αi, 1 ≤ i ≤ n−1. If i ≤ n−3, we

have 〈−3α+ρ, (αi+αi+1+αi+2)
∨〉 = 0; if i ≥ 3, we have 〈−3α+ρ, (αi−2+αi−1+

αi)
∨〉 = 0. This shows that Hk(X,Lχ) = 0 for all k. Thus, we get no contribution

to the potential support in these cases. This leaves us with the possibilities of n = 3
with i = 1, 2 and n = 4 with i = 2. In these cases, we have

−3α1 = (s1s2) · (2α1 + α2), −3α2 = (s2s1) · (α1 + 2α2) (n = 3)

−3α2 = (s2s1s3) · (α1 + 2α2 + α3) (n = 4).

Thus, we obtain 2α1+α2, α1+2α2 ∈ PSuppH2(X, b⊗3) when n = 3 and α1+2α2+
α3 ∈ PSuppH3(X, b⊗3) when n = 4.

This completes the proof of (5.9) and we now turn to the proof of (5.8).
Using the short exact sequence

0 → b⊗3 → g⊗ b⊗2 → b⊗2 ⊗ g/b → 0

and (5.2) we see that we have

H0(X, b⊗3) = 0, Hk(X, b⊗3) ∼= Hk−1(X, b⊗2 ⊗ g/b) for k ≥ 3,

and also an exact sequence
(5.12)
0 → H0(X, b⊗2 ⊗ g/b) → H1(X, b⊗3) → g → H1(X, b⊗2 ⊗ g/b) → H2(X, b⊗3) → 0.

Using the short exact sequence

0 → b
⊗2 ⊗ g/b → g⊗ b⊗ g/b → b⊗ (g/b)⊗2 → 0

and (5.7) we obtain

Hk(X, b⊗2 ⊗ g/b) ∼= Hk−1(X, b⊗ (g/b)⊗2) for k ≥ 2
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and an exact sequence

(5.13) 0 → H0(X, b⊗2⊗g/b) → g → H0(X, b⊗(g/b)⊗2) → H1(X, b⊗2⊗g/b) → 0.

Using the short exact sequence

0 → b⊗ (g/b)⊗2 → g⊗ (g/b)⊗2 → (g/b)⊗3 → 0

and (5.3) we obtain

Hk(X, b⊗ (g/b)⊗2) ∼= Hk−1(X, (g/b)⊗3) for k ≥ 2

and an exact sequence

0 → H0(X, b⊗ (g/b)⊗2) → g⊗H0(X, (g/b)⊗2) → H0(X, g/b⊗3)

→ H1(X, b⊗ (g/b)⊗2) → 0.

It follows that we have an isomorphism of G-modules

Hk(X, b⊗3) ∼= Hk−3(X, (g/b)⊗3) for k ≥ 4,

and an exact sequence of G-modules

0 → H0(X, b⊗ (g/b)⊗2) → g⊗H0(X, (g/b)⊗2)(5.14)

→ H0(X, (g/b)⊗3) → H3(X, b⊗3) → 0.

Thus, as 0 is not in the potential support of Hk(X, (g/b)⊗3), we conclude that

(5.15) Hk(X, b⊗3) does not contain the trivial representation for k ≥ 3 .

Thus, we conclude from (5.9) that Hk(X, b⊗3) = 0 for k ≥ 4.
Also, it follows from (5.9), (5.12), and (5.13) that

(5.16) H0(X, b⊗2 ⊗ g/b) ∼= H1(X, b⊗3) = 0.

Thus, we have shown, in particular, that Hk(X, b⊗3) = 0 for k = 0, 1. Thus, we
have obtained the first claim of (5.8). Before proceeding further, we record one
more general fact which we obtain from (5.16), (5.12), and (5.13):

(5.17a) H0(X, b⊗ (g/b)⊗2) ∼= H1(X, b⊗2 ⊗ g/b)⊕ g ∼= H2(X, b⊗3)⊕ g⊕2,

(5.17b) H1(X, b⊗ (g/b)⊗2) ∼= H2(X, b⊗2 ⊗ g/b) ∼= H3(X, b⊗3),

(5.17c) Hk−1(X, b⊗ (g/b)⊗2) ∼= Hk(X, b⊗2 ⊗ g/b) = 0 if k �= 1, 2.

We now argue with specific values of n.
Assume that n ≥ 5. It follows from (5.15) and (5.9) that

H3(X, b⊗3) = 0 and H2(X, b⊗3) ∼= C
⊕c ,

for some c which we determine later.
Assume that n = 4. It follows from (5.15) and (5.9) that

H3(X, b⊗3) ∼= L(α1 + 2α2 + α3) and H2(X, b⊗3) ∼= C
⊕a ,

for some a which we determine later.
Assume that n = 3. As α1+α2 is not in the potential support of H0(X, (g/b)⊗3),

we conclude from (5.9), (5.14) and (5.15) that

H3(X, b⊗3) = 0.
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Thus, H2(X, b⊗3) is the only non-vanishing cohomology group in this case. Making
use of Borel-Weil-Bott (3.1), just as in our argument for (5.9) we see that

H∗(X, gr(b⊗3)) ∼= C
⊕b + L(α1 + α2)

⊕5 + L(2α1 + α2) + L(α1 + 2α2) .

for some b. Therefore, we get:

H2(X, b⊗3) ∼= H∗(X, gr(b⊗3)) ∼= C
⊕b ⊕L(α1 +α2)

⊕5 ⊕L(2α1 + α2)⊕L(α1 + 2α2).

We now determine a, b, and c. Now,

C
⊕a ∼= C

⊕b ∼= C
⊕c ∼= HomG(C,H

2(X, b⊗3)) .

By (5.17a) we get

HomG(C,H
2(X, b⊗3)) ∼= HomG(C,H

2(X, b⊗3)⊕ g
⊕2)

∼= HomG(C,H
0(X, b⊗ (g/b)⊗2))

∼= HomG(C, g⊗H0(X, (g/b)⊗2)) ∼= (g⊗ g⊗ g)G ∼= C
⊕2,

where in the third equality we have made use of (5.14) and the fact that the trivial
representation does not occur in H0(X, (g/b)⊗3); in the fourth equality we made use
of (5.3). The last equality is classical and can also be verified by a direct calculation:
the two invariant tensors are (x, y, z) �→ Tr(xyz) and (x, y, z) �→ Tr(yxz). This
completes the proof of (5.8).

5.4. The case r = 4 and g of type An−1. Let g = sln, n ≥ 6.
In the previous cases we obtained complete information of the cohomology for all

values of n ≥ 3. For r = 4 we will not make an attempt to get a complete answer,
but will just obtain enough information for our counterexample. In particular, we
already have enough information to prove the Cohen-Macaulay property for sl3. In
the cases n = 4, 5 the answer is probably obtainable with our techniques, but is
more complicated.

We will show that if n ≥ 7, then

(5.18a) Hk(X, b⊗4) = 0 if k �= 2, 3

and if n = 6, then

(5.18b) Hk(X, b⊗4) =

{
L(α1 + 2α2 + 3α3 + 2α4 + α5) if k = 5,
0 if k �= 2, 3, 5 .

Remark 5.1. The H2(X, b⊗4) and H3(X, b⊗4) both consist of a number of copies of
the trivial representation.

We first show that

(5.19a) if n ≥ 7 PSuppHk(X, b⊗4) = {0} for all k ≥ 0

and

(5.19b)

if n = 6 PSuppHk(X, b⊗4)

=

{
{0} if k �= 5,
{0, α1 + 2α2 + 3α3 + 2α4 + α5} if k = 5 .

Let χ ∈ χ(b⊗4). Recall that the bundle associated to h = b/n is trivial. Thus,
by making use of (5.9), it suffices to prove the result for χ ∈ χ(n⊗4). If χ ∈ χ(∧4n),
we see by (3.1) and Lemma 3.1 that either Hk(X,Lχ) = 0 for all k or χ = w · 0 for
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some w ∈ W . Thus, we are reduced to considering the case when χ is not a sum of
distinct roots.

Assume first that χ = −2α−β−γ, where α, β, γ ∈ Φ+ are distinct. We will make
use of the notation and argue in a similar manner as in subsection 5.3. Suppose
that there exists a w ∈ W such that w · χ ∈ X+(T ) and w · χ �= 0. Making use
of (5.10) and (5.11) we conclude, as in subsection 5.3, that

w · (−2α− β − γ) = w(−2α− β − γ)−
∑
γ∈Φw

γ ≥ α0 .

Further, arguing as in subsection 5.3, we conclude that w has to satisfy that wα =
−α0, wβ < 0, wγ < 0 and �(w) = 3; but, α0 ∈ Φw only if l(w) ≥ n− 1 and we have
assumed that n ≥ 6.

Assume next that χ = −2α − 2β, where α, β ∈ Φ+ are distinct. Suppose that
there exists a w ∈ W , such that w ·χ ∈ X+(T ) and w ·χ �= 0. Making use of (5.11)
again we see that

w(−2α− 2β + ρ)− ρ = α0 + λ0

for some λ0 ∈ Z+Φ
+. In particular, we have

〈−2α− 2β + ρ,−2α− 2β + ρ〉 = 〈w(−2α− 2β + ρ), w(−2α− 2β + ρ)〉
= 〈α0 + λ0 + ρ, α0 + λ0 + ρ〉 ≥ 〈α0 + ρ, α0 + ρ〉 = 2n+ 〈ρ, ρ〉.

It follows that

〈α, α〉+ 〈β, β〉+ 2〈α, β〉 − 〈α+ β, ρ〉 ≥ n/2.

This can only happen when

n = 6, 〈α, β〉 = 1, 〈α, ρ〉 = 2, 〈β, ρ〉 = 1.

Here we can assume that htα = 〈α, ρ〉 ≥ htβ = 〈β, ρ〉.
Suppose that n = 6 and β = αi, 1 ≤ i ≤ 5. Then α = αi+αi+1 or α = αi−1+αi.

In the first case we have that −2α− 2β = −4αi − 2αi+1, and{ 〈−4αi − 2αi+1 + ρ, (αi−1 + αi)
∨〉 = 0 if i ≥ 2,

〈−4αi − 2αi+1 + ρ, (
∑i+3

j=i αj)
∨〉 = 0 if i ≤ 2.

In the second case we have that −2α− 2β = −2αi−1 − 4αi and{ 〈−2αi−1 − 4αi + ρ, (αi + αi+1)
∨〉 = 0 if i ≤ 4,

〈−2αi−1 − 4αi + ρ, (
∑i

j=i−3 αj)
∨〉 = 0 if i ≥ 4.

It follows that in these cases −2α−2β does not contribute to the potential support
as Hk(X,L−2α−2β) = 0 for all k.

Assume that χ = −3α − β, where α, β ∈ Φ+ are distinct roots. Suppose that
there exists a w ∈ W , such that w · χ ∈ X+(T ) and w · χ �= 0. Arguing as above,
we have

9〈α, α〉+ 〈β, β〉+ 6〈α, β〉 − 6〈α, ρ〉 − 2〈β, ρ〉 ≥ 2n.

This can happen only if n ≤ 8, 〈α, β〉 = 1, 3〈α, ρ〉 + 〈β, ρ〉 ≤ 13 − n, or if n = 6,
〈α, β〉 = 0, and 〈α, ρ〉 = 〈β, ρ〉 = 1. More precisely, if n = 6 and 〈α, β〉 = 1,
then the possible values for (〈α, ρ〉, 〈β, ρ〉) are (1, 2), (1, 3), (1, 4), (2, 1); if n = 7 and
〈α, β〉 = 1, then the possible values for (〈α, ρ〉, 〈β, ρ〉) are (1, 2), (1, 3); and if n = 8
and 〈α, β〉 = 1, then (〈α, ρ〉, 〈β, ρ〉) = (1, 2).
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Suppose first that 〈α, β〉 = 1 and α = αi, 1 ≤ i ≤ n − 1. Then β =
∑j

k=i αk

for some j ≥ i + 1 or β =
∑i

k=j αk for some j ≤ i − 1. In the first case we have

−3α− β = −4αi −
∑j

k=i+1 αk and

〈−3α− β + ρ, α∨
j 〉 = 0 if j �= i+ 1,

〈−3α− β + ρ, (
∑i+3

k=i αk)
∨〉 = 0 if j = i+ 1 and i ≤ n− 4,

〈−3α− β + ρ, (
∑i

k=i−2 αk)
∨〉 = 0 if j = i+ 1 and i ≥ 3;

in the second case we have −3α− β = −
∑i−1

k=j αk − 4αi and

〈−3α− β + ρ, α∨
j 〉 = 0 if j �= i− 1,

〈−3α− β + ρ, (
∑i+2

k=i αk)
∨〉 = 0 if j = i− 1 and i ≤ n− 3,

〈−3α− β + ρ, (
∑i

k=i−3 αk)
∨〉 = 0 if j = i− 1 and i ≥ 4.

Thus, in all of these cases −3α− β does not contribute to the potential support.
Suppose next that n = 6, 〈α, β〉 = 1, 〈α, ρ〉 = 2 and 〈β, ρ〉 = 1. Let us write

β = αi. Then α = αi + αi+1 or α = αi−1 + αi. We have

〈−4αi − 3αi+1 + ρ, (
∑i+1

k=i−1 αk)
∨〉 = 0 if i ≥ 2,

〈−4αi − 3αi+1 + ρ, (
∑i+3

k=i αk)
∨〉 = 0 if i ≤ 2

or

〈−3αi−1 − 4αi + ρ, (
∑i+1

k=i−1 αk)
∨〉 = 0 if i ≤ 4,

〈−3αi−1 − 4αi + ρ, (
∑i

k=i−3 αk)
∨〉 = 0 if i ≥ 4.

Thus, again, in this case −3α− β does not contribute to the potential support.
Suppose now that n = 6, 〈α, β〉 = 0, 〈α, ρ〉 = 〈β, ρ〉 = 1. Let us write α = αi

and β = αj . Then either j ≥ i+ 2 or j ≤ i− 2. We have

〈−3αi − αj + ρ, (
∑i+2

k=i αk)
∨〉 = 0 if j > i+ 3,

〈−3αi − αj + ρ, (
∑i+1

k=i αk)
∨〉 = 0 if j = i+ 2,

〈−3αi − αj + ρ, (
∑i+3

k=i αk)
∨〉 = 0 if j = i+ 3,

〈−3αi − αj + ρ, (
∑i

k=i−2 αk)
∨〉 = 0 if j < i− 3,

〈−3αi − αj + ρ, (
∑i

k=i−1 αk)
∨〉 = 0 if j = i− 2,

〈−3αi − αj + ρ, (
∑i

k=i−3 αk)
∨〉 = 0 if j = i− 3.

Thus, also in this case −3α− β does not contribute to the potential support.
Finally, assume that χ = −4α. If ht(α) ≥ 4, then χ is a sum of distinct negative

roots, so we can assume that ht(α) ≤ 3. Suppose that α = αi +αi+1 +αi+2. If i ≤
n− 4, then 〈−4α+ ρ, (

∑i+3
j=i αj)

∨〉 = 0; if i ≥ 2, then 〈−4α+ ρ, (
∑i+2

j=i−1 αj)
∨〉 = 0;

thus, Hk(X,Lχ) = 0 for all k.

Suppose that α = αi + αi+1. If i ≤ n − 4, then 〈−4α + ρ, (
∑i+3

j=i αj)
∨〉 = 0; if

i ≥ 3, then 〈−4α+ ρ, (
∑i+1

j=i−2 αj)
∨〉 = 0; thus Hk(X,Lχ) = 0 for all k.

Suppose that α = αi. If i ≤ n − 4, then 〈−4α + ρ, (
∑i+3

j=i αj)
∨〉 = 0; if i ≥ 4,

then 〈−4α+ ρ, (
∑i

j=i−3 αj)
∨〉 = 0; thus Hk(X,Lχ) = 0 for all k unless when n = 6

and i = 3. In this case we have

−4α3 = (s5s1s4s2s3) · (α1 + 2α2 + 3α3 + 2α4 + α5) .

This completes the proof of (5.19).
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Consider the short exact sequences

0 → b⊗ b
⊗i ⊗ (g/b)⊗(3−i) → g⊗ b

⊗i ⊗ (g/b)⊗(3−i)

→ g/b⊗ b
⊗i ⊗ (g/b)⊗(3−i) → 0, i = 0, 1, 2, 3.

From the exact sequence with i = 3 we conclude, making use of (5.8), that

H0(X, b⊗4) = 0, Hk(X, b⊗4) ∼= Hk−1(X, b⊗3 ⊗ g/b) for k ≥ 4 or k = 1

and we further obtain the exact sequence

0 → H1(X, b⊗3 ⊗ g/b) → H2(X, b⊗4) → g
⊕2 → H2(X, b⊗3 ⊗ g/b)

→ H3(X, b⊗4) → 0 .

Using the exact sequence with i = 2 and making use of (5.17) and (5.8) we get

H0(X, b⊗3 ⊗ g/b) = 0, Hk(X, b⊗3 ⊗ g/b) ∼= Hk−1(X, b⊗2 ⊗ (g/b)⊗2) for k ≥ 3

and we obtain the exact sequence

0 → H0(X, b⊗2 ⊗ (g/b)⊗2) → H1(X, b⊗3 ⊗ g/b) → g⊕2 ⊕ (g⊗ g)⊕2

→ H1(X, b⊗2 ⊗ (g/b)⊗2) → H2(X, b⊗3 ⊗ g/b) → 0 .

Using the exact sequence with i = 1 and making use of (5.17) and (5.8) we get

Hk(X, b⊗2 ⊗ (g/b)⊗2) ∼= Hk−1(X, b⊗ g/b⊗3) for k ≥ 2,

and the exact sequence

0 → H0(X, b⊗2 ⊗ (g/b)⊗2) → g
⊕2 ⊕ (g⊗ g) → H0(X, b⊗ g/b⊗3)

→ H1(X, b⊗2 ⊗ (g/b)⊗2) → 0 .

Using the exact sequence with i = 0 and making use of (5.17) and (5.8) we get

Hk(X, b⊗ (g/b)⊗3) ∼= Hk−1(X, (g/b)⊗4), k ≥ 2,

and we obtain the exact sequence

0 → H0(X, b⊗ (g/b)⊗3) → g⊗H0(X, (g/b)⊗3) → H0(X, (g/b)⊗4)

→ H1(X, b⊗ (g/b)⊗3) → 0.

It follows that

(5.20) Hk(X, b⊗4) = 0, k = 0, 1 and Hk(X, b⊗4) ∼= Hk−4(X, (g/b)⊗4), k ≥ 5

and

0 → H0(X, b⊗ (g/b)⊗3) → g⊗H0(X, (g/b)⊗3)(5.21)

→ H0(X, (g/b)⊗4) → H4(X, b⊗4) → 0.

As 0 is not in the potential support of Hk(X, (g/b)⊗4), using (5.19), (5.20) and
(5.21) we see that (5.18) follows.
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5.5. Type B2. As the case r = 1 applies to any type, we consider the case r = 2
here. We write Φ+ = {α1, α2, α1 + α2, 2α1 + α2}, where 〈α1, α

∨
2 〉 = −1 and

〈α2, α
∨
1 〉 = −2.

Just as in subsection 5.2 one checks that:

PSupp(Hk(X, b⊗ b)) =

⎧⎨⎩
{0} if k = 0, 1, 3,
{0, α1 + α2} if k = 2,
∅ if k ≥ 4.

Proceeding as in 5.2 we see that:

(5.22) Hk(X, b⊗ b) =

⎧⎪⎨⎪⎩
0 if k = 0 of k ≥ 3,

C if k = 1,

L(α1 + α2) if k = 2 .

The only difference to the argument in subsection 5.2 is that the weight α1 + α2

occurs for k = 2 only and it occurs precisely once in that case; otherwise the
argument is the same.

6. Results and counterexamples

6.1. The case of A2. In this case we have the following:

Theorem 6.1. For g = sl3 the variety Ar has rational singularities, and thus is
Cohen-Macaulay, for all r.

Proof. According to Lemma 4.3 it suffices to show that

Hi(X, b⊗r) = 0 for all i ≥ r ≥ 1.

Since cohomology vanishes in degrees above the dimension, we only have to consider
the cases r = 1, 2, 3. These cases are treated in subsections 5.1, 5.2, and 5.3,
respectively.

The fact that Ar is Cohen-Macaulay follows; see for example [K, Page 50].
�

Remark 6.1. By a slight modification of our methods one can show that this result
holds for all characteristics above 3.

6.2. The case of B2 and r = 2. We will show that A2 is not normal in the case
of B2. For A2 to be normal, the map

Sym(g⊕ g) → H0(X, Sym(g/b⊕ g/b))

has to be onto. In particular, this has to hold for Sym2 and hence, by decomposing
the Sym2 on both sides, the map

g⊗ g → H0(X, g/b⊗ g/b)

has to be onto. Making use of the spectral sequence (4.5), (5.1), and (5.22) we get
that

Ep,−q
1 = (g⊗2−q)⊕(

2
q) ⊗Hp(X, b⊗q) =

⎧⎪⎨⎪⎩
g⊗2 if p = q = 0,

L(α1 + α2) if p = q = 2,

0 otherwise if p− q ≥ 0 .

As the term E2,−2
1 must survive in the spectral sequence, we see that g⊗2 →

H0(X, (g/b)⊗2) cannot be onto and so A2 is not normal in this case.
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Remark 6.2. Using the same method as in the previous section, one can show that

PSupp(Hk(X,∧3(b⊕2))) =

⎧⎨⎩
{0} if k = 0, 1, 4,
{0, α1 + α2, 2α1 + α2} if k = 2,
{0, α1 + α2} if k = 3.

In subsection 5.5 we have shown that Hi(X,∧2(b⊕2)) = 0 for i ≥ 3. Making use of
the Koszul complex (4.3), we see thatHk(X,∧3(b⊕2))) ∼= Hk−3(X, Sym3((g/b)⊕2)).
Since 0 is not in the potential support of Hk(X, Sym3((g/b)⊕2)), we conclude that

H4(X,∧3(b⊕2)) = H1(X, Sym3((g/b)⊕2)) = 0.

Since cohomology vanishes in degrees above the dimension, we see thatHi(X,∧j(b⊕2)) =
0 for all j and all i ≥ j + 1, which in turn implies that

Hi(X, Sym((g/b)⊕2)) = 0 for all i ≥ 1.

Thus, we see that the normalization of A2 for B2 has rational singularities.

6.3. The case of A3 and r = 3. Making use of the spectral sequence (4.5), (5.1),
(5.2), and (5.8) we get that

Ep,−q
1 = (g⊗3−q)⊕(

3
q)⊗Hp(X, b⊗q) =

⎧⎪⎨⎪⎩
g⊗3 if p = q = 0,

L(α1 + 2α2 + α3) if p = q = 3,

0 otherwise if p− q ≥ 0 .

As the term E3,−3
1 must survive in the spectral sequence we see that g⊗3 →

H0(X, (g/b)⊗3) cannot be onto and so, arguing as in the case of B2 above, we
see that A3 is not normal.

Remark 6.3. Similarly to the case of A2 for B2, the normalization of A3 for type A3

has rational singularities. One proceeds the same way as in that case. In particular,
we have

PSupp(Hk(X,∧4(b⊕3))) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{0} if k = 5, 6,

{0, α1 + α2 + α3, α1 + 2α2 + α3} if k = 4,{
0, α1 + α2 + α3, α1 + 2α2 + α3,

α1 + 2α2 + 2α3, 2α1 + 2α2 + α3

}
if k = 3,

PSupp(H6(X,∧5(b⊕3))) = {α1 + α2 + α3, 0}.
Note that 0 and α1+α2+α3 are not in the potential support ofH1(X, Sym5((g/b)⊕3)).

6.4. The case of A5 and r = 4. Making use of the spectral sequences (4.5), (5.1),
(5.2), (5.8), and (5.18) we see that

Ep,−q
1 = (g⊗3−q)⊕(

3
q) ⊗Hp(X, b⊗q)

=

{
L(α1 + 2α2 + 3α3 + 2α4 + α5) if p = 5 and q = 4,

0 otherwise if p− q > 0.

As the termE5,−4
1 must survive in the spectral sequence, we see thatH1(X, (g/b)⊗4)

= L(α1 +2α2 +3α3 +2α4 +α5). In particular, it is not zero and hence in this case
the normalization of A4 does not have rational singularities.
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